Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(triethanolamine)cobalt(II) benzene-1,4-dioxydiacetate

Shan Gao, ${ }^{\text {a }}$ * Ji-Wei Liu, ${ }^{\text {a }}$ Li-Hua Huo ${ }^{\mathrm{a}}$ and Seik Weng $\mathbf{N g}^{\text {b }}$

${ }^{\text {a College of Chemistry and Chemical }}$ Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in main residue
R factor $=0.056$
$w R$ factor $=0.165$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)$, comprises a $\mathrm{Co}^{\text {II }}$ cation, coordinated centrosymmetrically in an octahedral $\mathrm{N}_{2} \mathrm{O}_{4}$ mode by two tridentate triethanolamine ligands, and a centrosymmetric benzene-1,4-dioxyacetate dianion. The ions are linked by hydrogen bonds into a supramolecular network.

Comment

Among transition metal complexes containing triethanolamine and organic acid ligands, triethanolamine functions either as a tridentate ligand, e.g. in Cu and Ni salts (Krabbes et al., 1999, 2000), or as a tetradentate ligand, e.g. in an Mn salt (Andruh et al., 1993). Recently, we reported the structure of the complex $\left[\mathrm{Cu}\left(\right.\right.$ triethanolamine) (imidazole) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)$ $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)_{0.5}$, which incorporates benzene-1,4-dioxyacetate as a counterion (Gao et al., 2004). Here, our study is extended to the title $\mathrm{Co}^{\text {II }}$ complex, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)$, (I), obtained from the assembly reaction of cobalt diacetate trihydrate, benzene-1,4-dioxyacetic acid and triethanolamine.

(I)

As shown in Figs. 1 and 2, the crystal structure of (I) reveals that the asymmetric unit comprises half of a mononuclear $\mathrm{Co}^{\mathrm{II}}$ complex cation, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)_{2}\right]^{2+}$, and half of a benzene-1,4-dioxyacetate dianion. Both the cation and anion lie on inversion sites.

The triethanolamine ligand is bonded in a tridentate chelating mode. This contrasts with the situation in the related $\mathrm{Cu}^{\mathrm{II}}$ complex (Gao et al., 2004), where the triethanolamine is coordinated in a tetradentate fashion. The $\mathrm{Co}^{\text {II }}$ cation is coordinated by four hydroxyl O atoms and two N atoms, so as to define a distorted octahedral configuration (Table 1). In the anion of (I), the acetate groups and the benzene ring are not coplanar, as seen in the $\mathrm{C} 9-\mathrm{O} 6-\mathrm{C} 8-\mathrm{C} 7$ torsion angle of $98.8(4)^{\circ}$.

The uncoordinated hydroxy O atom forms an intermolecular hydrogen bond with a carboxyl O atom, resulting in the formation of a one-dimensional chain, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.743 (5) \AA and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of 148°. Another description of the crystal structure of (I) is that in

Received 17 March 2004 Accepted 22 March 2004 Online 27 March 2004

(a)

(b)

Figure 1
Displacement ellipsoid plots, at the 30% probability level, for (a) the $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)_{2}\right]^{2+}$ cation in (I) and (b) the $\left[\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right]^{2-}$ anion in (I). [Symmetry code: (i) $1-x, 1-y, 1-z$].
which layers of anions alternate with layers of cations, the layers being linked via hydrogen bonds to give rise to a supramolecular network (Table 2, Fig. 2).

Experimental

Benzene-1,4-dioxyacetic acid was prepared by the method described for the synthesis of benzene-1,2-dioxyacetic acid (Mirci, 1990). Cobalt diacetate trihydrate $(4.76 \mathrm{~g}, 20 \mathrm{mmol})$ and benzene-1,4-dioxyacetic acid $(9.04 \mathrm{~g}, 40 \mathrm{mmol})$ were dissolved in water and the pH was adjusted to 7 with triethanolamine. Pink crystals of (I) separated from the filtered solution at room temperature over several days. CHN analysis: calculated for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Co}$: C 45.44, H 6.59, N 4.82\%; found: C 45.70, H 6.66, N 4.69%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)$	$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=581.47$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 5364
$a=11.116(2) \AA$	reflections
$b=10.480(2) \AA$	$\theta=3.1-27.4^{\circ}$
$c=11.369(2) \AA$	$\mu=0.72 \mathrm{~mm}^{-1}$
$\beta=94.88(3)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1319.7(4) \AA^{\circ}$	Block, pink
$Z=2$	$0.38 \times 0.27 \times 0.18 \mathrm{~mm}$

$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5364
reflections
$\theta=3.1-27.4^{\circ}$
$\mu=0.72 \mathrm{~mm}$
Block, pink
$0.38 \times 0.27 \times 0.18 \mathrm{~mm}$

Figure 2
The packing of (I).

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.773, T_{\text {max }}=0.882$
5772 measured reflections

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.165$
$S=0.98$
3013 reflections
182 parameters

3013 independent reflections
1996 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 14$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1059 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.05 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.068(2)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.172(3)$
$\mathrm{Co} 1-\mathrm{O} 2$	$2.103(2)$		
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	$92.87(9)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	$80.8(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$82.3(1)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O}^{\text {ii }}$	0.93	1.93	$2.564(4)$	123
O2-H2 $^{\mathrm{ii}}$	0.93	2.17	$2.597(3)$	107
O3-H3 $^{\mathrm{ii}}$	O4	0.82	2.01	$2.743(5)$

[^0]Two of the aminoethyl groups of the triethanolamine molecule are disordered over two sites, with assumed equal occupancy. Within each group, the pairs of $\mathrm{C}-\mathrm{O}, \mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances were restrained to be approximately equal. Additionally, the displacement parameters of the unprimed and primed atoms were set to be equal to each other. The distance restraints gave a model in which these distances are sensible. However, the model has an intramolecular $\mathrm{H} 2^{\prime} 1 \cdots \mathrm{H} 6 B$ contact of $1.65 \AA$. Attempts at using other distance restraints led to a wider spread of bond distances. H atoms bound to C and O atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (aliphatic) and $\mathrm{O}-\mathrm{H}=0.82 \AA$ (hydroxyl group), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$, using a riding model approximation.

Data collection: RAPID AUTO (Rigaku, 1998); cell refinement: RAPID AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Educational Committee Foundation of Heilongjiang Province, Heilongjiang University and the University of Malaya.

References

Andruh, M., Hubner, K., Noltemeyer, M. \& Roesky, H. W. (1993). Z. Naturforsch. Teil B, 48, 591-597.
Gao, S., Liu, J.-W., Li, J.-R, Huo, L.-H. \& Zhao, H. (2004). Acta Cryst. E60, m94-m95.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Krabbes, I., Seichter, W., Breuning, T., Otschik, P. \& Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562-1565.
Krabbes, I., Seichter, W. \& Gloe, K. (2000). Acta Cryst. C56, e178.
Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku (1998). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: Symmetry code: (ii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$.

